C. Homotopy and CW-complexes

Homotopy groups are very powerful, especially for CW- complexes
Recall if A is a topological space

$$
f: \frac{\|}{1 \in I} S^{n-1} \rightarrow A \text { a contriuous map }
$$

then

$$
X=A \cup_{f}\left(\frac{\|}{z \in I} D^{n}\right)=\frac{A \Perp\left(\frac{\Perp}{\imath \in I} D^{n}\right)}{\sim}
$$

where $x \in \partial\left(\Perp D^{n}\right)$ is identified with $f(x) \in A$ is said to be the result of attacking n-cells to A

a relative CW complex is a pair (X, A) sit.

1) X is a topological spare
2) A is a closed subspace
and \exists a sequence of subspaces $X_{1}^{(n)} n=-1,0,1, \ldots$ called the n-sheleta sit.
3) $X^{(-1)}=A$
4) $x^{(n)}$ is obtained from $x^{(n-1)}$ by attaching
n-cells
5) $X=\bigcup_{i=-1}^{\infty} X^{(i)}$ and
6) $B \subset X$ is closed $\Leftrightarrow B \cap X^{(n)} c$ closed
for all n
If there is an n such that $X=X^{n}$ then X is n-dimensional, otherwise X is ∞-dimensional
a CW complex is a space X st. (X, \varnothing) is a relative CW pair
Remark: If X has a finite number of cells we don't need 6).
7) is the W in CW complex, it means use the "weak" topology on X
If X is a C W complex a subcomplex $A \subset X$ is a closed subset that is a union of cells in X (X, A) is called a CW pair
exercise: if (X, A) a Cw pair then X / A is a $C Q$ complex
examples: 1) a 1-dimensional CW complex is a graph
8) Surfaces are CW complexes
exencisé: show this as are all manifolds
9) if X, Y are CW complexes then so is $X \times Y$
exercise: work out the CW structure
a map $f: X \rightarrow Y$ between (W complexes is cellular if $f\left(x^{(n)}\right) \subset y^{(n)}$ for all n

Cellular Approximation $T_{l}{ }^{m}$:
If $f: X \rightarrow Y$ is a continuous map between CW complexes and f is cellular on $A \subset X$ a sub CV complex then f is homotopic, rel A, to a map $g: X \rightarrow Y$ st. g is cellular

You can find a proof in many books, eg. Hat chen.
we can now compute some homotopy groups

$$
\pi_{k}\left(S^{n}\right)=0 \text { for } k<n
$$

Proof: given $f:\left(S^{k}, s_{0}\right) \rightarrow\left(S^{n}, x_{0}\right) \quad\left(s_{0}, x_{0}\right.$ the 0 -skeletal) can homotop (fixing image of s_{0}) to a map g such that $g\left(s^{k}\right) \subset\left(k\right.$-skelaton of $\left.s^{u}\right)=\left\{x_{0}\right\}$ $\therefore g$ constant

We compute $\pi_{n}\left(S^{n}\right)$ later
What about $\pi_{k}\left(s^{n}\right)$ for $k>n$?
this is very hard in general!
example: $\pi_{3}\left(s^{2}\right) \neq 0$
to see this let $f: s^{3} \rightarrow s^{2}$ be
the Hopf map
recall: $s^{3} \subset \mathbb{C}^{2}$ unit sphere
$s^{\prime} c \mathbb{C}$ unit sphere act on s^{3}
$s^{3} / s^{\prime}=$ complex lines in \mathbb{C}^{2}

$$
\begin{aligned}
=\mathbb{C} P^{\prime} & \cong s^{2} \\
f: s^{3} \rightarrow s^{3} / s^{\prime} & =s^{2} \text { is the the }
\end{aligned}
$$

quotient map
also $C P^{2}=\mathbb{C} P^{\prime} \cup_{f} B^{4}<$ exercise 1.e. attach 4 -cell to s^{2}
if $f \simeq 0$ then $c p^{2} \simeq S^{2} \vee S^{4}$
easy to see $\left[s^{2}\right] \in H^{2}\left(s^{2} v s^{4}\right)$
has $\left[s^{2}\right] \cup\left[s^{2}\right]=[0] \in H^{4}\left(s^{2} v s^{4}\right)$
but Poincare duality says

$$
\begin{gathered}
{\left[s^{2}\right] \in H^{2}\left(\mathbb{C} P^{2}\right) \text { has }} \\
{\left[s^{2}\right] \cup\left[s^{2}\right] \neq 0 \text { in } H^{4}\left(\mathbb{C} P^{2}\right)} \\
\therefore f \neq 0 \text { and } \pi_{3}\left(s^{2}\right) \neq 0
\end{gathered}
$$

later we will see $\pi_{3}\left(s^{2}\right) \cong \mathbb{Z}$
lemma 19: \qquad induces an isomorphism

$$
1_{*}: \pi_{k}\left(x^{(n)}\right) \rightarrow \pi_{k}(x) \text { for } k<u
$$

and a surjection

$$
\tau_{x}: \pi_{n}\left(x^{(n)}\right) \rightarrow \pi_{n}(x)
$$

Proof: i_{*} is surjective for $k \leq n$ by argument above (about $\pi_{k}\left(s^{n}\right)=0$ for $k<n$)
now if $k<n$ we show infective
given $f: s^{k} \rightarrow x$ and $g: s^{k} \rightarrow x$ in $\pi_{k}(x)$
we can assume their image is in $X^{(k)}$ from above if $[f]=[g]$ in $\pi_{k}(x)$ then they are homotopic
by $H: S^{k} x[0,1] \rightarrow X$ (fixing s_{0}) $s^{k} x[0,1]$ has a $C W$ structure of dim $k+1$ by the Cellular Approximation Th ${ }^{m}$ we can homotop H, staying fixed on $S^{k} \times\{0,1\}$ and on $\left\{S_{0}\right\} \times[0,1]$ to $G: S^{k} \times[0,1] \rightarrow x^{(k+1)} \subset x^{(n)}$
so $[f]=[g]$ in $\pi_{k}\left(x^{(n)}\right)$
lemma 20:
If (X, A) a relative $C W$ complex and A is contractible them $X / A \simeq X$
we prove this later but now we see some consequences
call a space X k-wnnected if

$$
\pi_{l}(x)=0 \quad \forall l \leq k
$$

Th ${ }^{m} 21$:
If X is a k-connected W complex then $X \simeq X^{\prime}$ where X^{\prime} is a CW complex containing a single vertex and no cells of dianeusion 1 through k

Proof: let e_{0} be a venter of x Since X is O-connected it contains paths $\alpha_{1} \ldots \alpha_{n}:[0,1] \rightarrow X$ connecting e_{0} to the other resticies $e_{1} \ldots e_{n}$
by cellular approxiciation we can assume $\alpha_{i}:[0,1] \rightarrow X^{(1)}$
for each i we can glue a 2 -disk D_{i}^{2} to X as follows:

let X_{1}^{\prime} be the resulting space note: X_{1}^{\prime} a CW complex you get X_{1}^{\prime} by adding
the 1－cell

then the 2－cell

$$
e_{i}^{2}=D_{i}^{2} a \operatorname{long} \alpha_{2} \cup e_{i}^{\prime} .
$$

Clearly $X_{1}^{\prime} \simeq X$ since we can deformation retract X_{1} to X

政しゃ
note：$U e_{i}^{\prime}$ is a contractible subcomplex of X_{1}^{\prime}
so if we set $X_{1}=X_{1}^{\prime} / v e_{z^{\prime}}^{1}$
lemma 20 says $x_{1} \simeq x_{1}^{\prime} \simeq x$ and X ，is a CW complex with one vertex
Now assume $X \simeq \hat{x}$ where \hat{x} a CW complex with one vertex and no cells of dim $1, \ldots, l$ for $l<k$
we want to find \hat{X}^{\prime} st．$\hat{x}^{\prime} \cong X$ and no cells of d in $1, \ldots, \ell+1$
each let cell e^{l+1} is attached by a map $\partial e^{e+1} \xrightarrow{f} X^{(l)}=\left\{e_{0}\right\}$ that is constant

so e^{l+1} gives an element of $\pi_{l+1}(\hat{x})=0$ so \exists a disk $\alpha: D^{l+2} \rightarrow \hat{x}$ such that $\alpha\left(\partial D^{l+2}\right)=e^{l+1}$ and we can assume $\alpha\left(D^{l+2}\right) \subset \hat{\chi}^{(l+2)}\binom{$ cellular }{ approx }
now glue D^{l+3} to \hat{x} by

to get \tilde{x} note \tilde{x} has a new $(l+2)$ cell e and a new $(l+3)$ cell e^{\prime}

now as above D^{l+3} can be contracted to D^{l+2} so $\tilde{x} \simeq \hat{x}$
e is a contractible subcomplex of \tilde{x}
so $\hat{x}^{\prime}=\tilde{x} / e \simeq \tilde{x}=\hat{x}$
and \tilde{x} has one less $(l t 1)$ cell
than \hat{x}
continuing we can get \hat{x}^{\prime} with no（l ti）cells．
Corollary 22： \qquad
then X is contractible！
Proof：if x a finite dimensional complex then $T^{\text {m}}$ 21 says it is $\simeq\{p t\}$ If X is infinite dimienssial then X having weak topology allows us to conclude some musing

Corollary 23：
if X is an n－connected $C W$－complex
then $\tilde{H}_{k}(x)=0 \quad \forall k \leq n$

Proof：use Cellular homology

$$
\begin{aligned}
& H_{k}=H_{k} \text { for } k \geq 0 \\
& H_{0}=\text { 底国 }
\end{aligned}
$$ recall the chain groups are

$$
\begin{aligned}
& C_{k}(X)= \text { free abeliain group generated } \\
& \text { by } k \text {-cells } \\
&= \oplus \not \mathbb{Z} \\
& \# h \text {-cells }
\end{aligned}
$$

so if X is u-connected, Th $\underline{m} 21$ says

$$
x \simeq \hat{x} \text { with } \hat{x}^{(n)}=\left\{e_{0}\right\}
$$

so $C_{k}(\hat{x})=0 \quad \forall k=1, \ldots, n$
$C_{0}(\hat{x})=\mathbb{Z}$ so $H_{0}(\hat{x})=\mathbb{Z}$ but
$\tilde{H}_{0}(\hat{x})=0$

$$
\therefore H_{k}(\hat{x})=0 \quad \forall k=1, \ldots, n \text { too }
$$

Th ${ }^{2} 24:$
If (X, A) a $C W$ pair and $\pi_{n}(X, A)=0$ $\forall n$
then X deformation retracts to A (zee $X \simeq A$)

Proof: just like proof of 21 and 22 exercise: give proof

Th쓴 (Whitehead's Theorem):
If X, Y are $C W$ complexs with base points $x_{0} \subset X^{(0)}$ and $y_{0} \in Y^{(0)}$ with Y connected, and $f:\left(x, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a map such that $f_{*}: \pi_{k}\left(X, x_{0}\right) \rightarrow \pi_{k}\left(Y, y_{0}\right)$ is som. $\forall k$ then $f: X \rightarrow Y$ is a homotopy equivalence

Remarks:

1) f satisfying the hypothosis is called a weak hamotopy equivalence
so th" says: "for CW complexes a weak htpy equiv is a harpy equiv."
2) Two spaces can have isomorphic $\pi_{"}$ bn and not be homotopy equivalent. You really need a map between the spaces to induce the isomorphism.
for example, let $X=\mathbb{R} p^{2} \times s^{3}$ and $Y=s^{2} \times \mathbb{R} p^{3}$ from Alg Top I we know $\pi_{1}(x) \cong \mathbb{Z} / 2 \cong \pi_{1}(y)$ and since $S^{2} \times S^{3}$ covers both X and Y
lemma 18 says

$$
\pi_{n}(x) \cong \pi_{1}\left(s^{2} \times s^{3}\right) \cong \pi_{n}(y) \quad \forall n \geq 2
$$

but X and Y are not weakly harry equiv since $H_{5}(X)=0$ since X is not oneñt. and $H_{5}(Y) \cong \mathbb{Z}$ since Y is orient.

Proof: given $f: X \rightarrow Y$ we can make it cellular and consider the mapping cylinder

$$
C_{f}=(X \times[0,1])^{1 / y} /(x, 0) \sim f(x)
$$

exercise: C_{f} has a CW structure
 where $X \times\{1\}$ is a subcomplex

is the homotopy inverse of $\because: Y \rightarrow C_{f}$
let $i_{x}: X \rightarrow C_{f}: x \mapsto(x, 1)$ be inclusion

$$
\begin{aligned}
& X \underset{y^{2}}{\stackrel{2}{\longrightarrow}} C_{f} \\
& f \searrow_{j}^{0} \ell j
\end{aligned}
$$

under homotopy equiv $j, f \approx 1_{x}$
\therefore since $f_{*}: \pi_{n}(x) \rightarrow \pi_{n}(y) \cong$ Un we also hove $\left(\tau_{x}\right)_{*}: \pi_{n}(x) \rightarrow \pi_{n}\left(c_{f}\right) \cong \forall n$
thus by the long exact sequence in lem 17

$$
\pi_{1}(x) \stackrel{\cong}{\rightrightarrows} \pi_{n}\left(c_{f}\right) \rightarrow \underset{\substack{11 \\ 0}}{\pi_{n}\left(c_{f} x\right) \rightarrow \pi_{n-1}(x) \stackrel{\cong}{\rightrightarrows} \pi_{n-1}\left(c_{f}\right)}
$$

$\therefore \pi^{m} 24 \Rightarrow C_{f}$ deformation retracts to x

$$
\text { ie } C_{f} \simeq x \quad \therefore \quad x \simeq c_{f} \simeq \zeta^{\prime}
$$

Recall for all these results we need lemma 20 to prove lemma 20 we need a technical lemma
lemma 26 (Htomotopy Extension Theorem) \qquad
given- a relative CW pair (X, A)

- a map $f: X \rightarrow Y$ and
- a homotopy $H: A \times[0,1] \rightarrow Y$ of f / A then there is an extension of H to

$$
G: X \times[0,1] \rightarrow Y
$$

such that $G(x, t)=H(x, t) \quad \forall x \in A, 4$ and

$$
G(x, 0)=f(x)
$$

exercise: Directly prove T^{m} ̈ 21 and 24 using Lemma 26
Proof: Main point: for any disk D^{n} there is a deformation retraction of $D^{n} \times\{0,1]$ to $D^{n} \times\{0\} \cup \partial D^{n} \times\{0,1]$

Pf: let $D^{n} \subset \mathbb{R}^{n}=\mathbb{R}^{n} \times\{0\} \subset \mathbb{R}^{n+1}$
so $D^{n} \times[0,1] \subset \mathbb{R}^{n+1}$
let $P=(0,0, \ldots, 0,2)$

given $x \in D^{n} \times\{0,1]$ let $l_{x}=$ line through x and p and set $\tilde{\sim}(x)=\ell_{x} \cap\left(D^{n} \times\{0\} \cup \partial D^{n} \times\{0,1]\right)$ unique point!
clear \tilde{r} is a retraction (need to check continuous and $\widetilde{r}_{t}=t \tilde{r}+\left.(1-t)\right|_{D^{n} \times[0,1]}$ exercise) is a deformation retraction,
now suppose $X-A$ is just one cell $D^{n}, 20^{n} \subset A$ note by hypothesis we have a map

$$
\bar{H}: \underbrace{(X \times\{0\}) \cup(A \times[0,1])}_{B}) \rightarrow Y:\left\{\begin{array}{l}
(x, 0) \longmapsto f(x) \\
(x, t) \longmapsto H(x, t) \quad x \in A
\end{array}\right.
$$

now set $G: x \times[0,1] \rightarrow Y: \begin{cases}\tilde{H}(x, t) & \text { if } x \in B \\ H \circ \tilde{r}(x, t) & \text { if } x \in D^{\hat{n}} \times[0,1]\end{cases}$
this is clearly an extension!
for a general X, we just do this cell by cell
Proof of lemma 20: recall we know A is contractible
so \exists a homotopy $f: A \times[0,1] \rightarrow A \subset X$ st.

$$
\begin{aligned}
& f_{0}(x)=f(x, 0)=x \\
& f_{1}(x)=f(x, 1) \text { is constant }
\end{aligned}
$$

note $f_{0}=F_{0} l_{A}$ where $F_{0}=i d x$
so HET gives a homotopy $F: X \times[0,1] \rightarrow X$ extending f since $F_{t}(A) \subset A$ for all t we get maps $\bar{F}_{t}: X / A \rightarrow X / A$
also $F_{1}(A)=$ pt so F_{1} also gives a map $h: X / A \rightarrow X$

you can easily check $h \circ g=F_{1}$ and $g \circ h=\bar{F}_{1}$
but now $h \circ g=F_{1} \sim F_{0}={ }_{1} d_{x}$

$$
q \circ h=\bar{F}_{1} \sim \bar{F}_{0}=i d_{x / A}
$$

back to computing π_{k} 's
recall by lemma $10 \pi_{1}\left(x, x_{0}\right)$ acts on $\pi_{n}\left(x, x_{0}\right)$ given $[\gamma] \in \pi_{1}\left(X, x_{0}\right)$ and $[f] \in \pi_{n}\left(X, x_{0}\right)$ let
$\gamma \cdot f$ be

and $[\gamma] \cdot[f]=[\gamma . f]$
exercise: this makes $\pi_{n}\left(x, x_{0}\right)$ a $\pi_{1}\left(x, x_{0}\right)$-module
Th m $27:$
let $\cdot X$ be a topological space, $x_{0} \in X$

- $f: \partial D^{n} \rightarrow X$ a map, $y_{0} \in D^{n}$ and $f\left(y_{0}\right)=x_{0}$
- $\hat{X}=X \cup_{f} D^{n}=X \cup D^{2} / \sim$ where $y \in \partial D^{n}{ }_{\sim} f(y) \in X$
- $i: x \rightarrow \hat{x}$ the inclusion map
then $n_{*}: \pi_{k}\left(x, x_{0}\right) \rightarrow \pi_{k}\left(\hat{x}_{1} x_{0}\right)$ is an isomorphism for $k<n-1$ and surjective for $k=n-1$ with kernel the normal subgroup generated by $[f]$ and $[\gamma] \cdot[f]$ for all $[\gamma] \in \pi_{1}\left(x, x_{0}\right)$

Proof: given $g: S^{k} \rightarrow \hat{x}$ consider $g^{-1}\left(\right.$ int $\left.D^{n}\right)$ this is a smooth suburb of S^{k} so we can isotop g to be smooth in some able of $f^{-1}(p)$ some $p \in$ int D^{n} and then to be transverse to p so if $k<n$ then $f^{-1}(\rho)=\varnothing$ and since $D^{n}-p$ retracts to $\partial D^{n}, g$ is is topic to a map with in age is X ie. 1_{*} is onto for $k<n$
similarly if $g_{0}, g_{1}: s^{k} \rightarrow \hat{X}$ are homotopic via $H: S^{k} \times[0,1] \rightarrow \hat{X}$ and $k<n-1$ then we can homotop H to hove in inge in $x, \therefore 2$ is infective for $k<n-1$ now for $2_{*}: \pi_{n-1}\left(x, x_{0}\right) \rightarrow \pi_{n-1}\left(\hat{x}, x_{0}\right)$ clearly $[f]$ and $[\gamma] \cdot[f]$ in kern η_{*} for all $[\gamma] \in \pi_{1}\left(x, x_{0}\right)$
so we are left to see $[g] \in \operatorname{ker} \tau_{*}$ is in smallest nor mal subgp gen by $[\gamma] \cdot[f]$ we know $\exists G: D^{n} \rightarrow \hat{X}$ such that $G /_{\partial 0^{n}}=9$个 equivalent to 9 null-homotopic as above, we can assume $G^{-1}(p)=\left\{p_{1} \ldots p_{n}\right\}$ let N_{i} be a able of p_{i} in D^{1} as above, $G l_{D^{n} \cup U N_{i}}$ is homstopic to G^{\prime} with inge in X and each boundary component of $\left(\partial\left(D^{n} \backslash U_{N_{i}}\right)-\partial D^{n}\right)$ has image equal to image (f)

so $\exists p_{i} \in \partial N_{i}$ s.t. $\quad G^{\prime}\left(p_{i}\right)=x_{0}$ let $\alpha,:[0,1] \rightarrow D^{n} \backslash \cup N_{i}$ be path y_{0} to p_{i}

claim: $\left.[g]=\pi\left[G^{\prime} \circ \alpha_{l}\right] \cdot \sigma^{\prime}\left(\partial v_{1}\right)=\pi\left[C^{\prime} \cdot \alpha_{1}\right] \cdot \varepsilon f\right]$ indeed, note D^{n} maps onto $\left(D^{n}, \cup N_{1}\right) \backslash\left(U\right.$ in $\left.\sigma^{i} \alpha\right)$

$$
\left(\left(D^{n} \backslash U N_{1}\right) \backslash\left(U \text { in } \sigma_{i \alpha_{1}}^{\prime}\right) \text { is } D^{n}\right)
$$

so $[g]\left(\pi\left[\sigma_{\circ}^{\prime} \alpha_{1}\right] \cdot[f]\right)^{-1} \simeq$ constant
The 28:
any topological space is weakly homotory equivalent to a CW complex

Proof: let X be a topological space (we con assume X is path connected) let $x_{0} \in X$

Set $Y_{0}=\left\{e^{0}\right\}$ and $f_{0}: Y_{0} \rightarrow X: e^{0} \mapsto x_{0}$ f_{0} induces an isomorphism on π_{0}
let $\alpha_{1}, \ldots, \alpha_{k}:[0,1] \rightarrow X$ generate $\pi_{1}\left(X, x_{0}\right)$
Set $Y_{1}^{\prime}=Y_{0} \cup e_{1}^{\prime} \cup \ldots \cdot v e_{k}^{\prime}$

extend f_{0} to $f_{1}^{\prime}: Y_{1}^{\prime} \rightarrow X$ by α_{2} on each e_{i}^{\prime}
clearly f_{1}^{\prime} induces an isomorphism on $\pi_{n}, n<1$ and surjective for $n=1$
let $\beta_{1} \ldots, \beta_{l}$ generate the kernel of $\left(f_{1}^{\prime}\right)_{\infty}$ on $\pi_{1}\left(Y_{1}^{\prime}\right)$ so $f_{1}^{\prime} \circ \beta_{1}:[0,1] \rightarrow X$ is null-homotopic
and we hove disks $F_{j}: D^{2} \rightarrow X$ st.

$$
F_{i} l_{\partial D^{2}}=f_{1}^{\prime} \circ \beta_{i}
$$

let $Y_{1}=Y_{1}^{\prime} \cup \prod_{2=1}^{l} \bar{e}_{i}^{2} \quad$ where \bar{e}_{i}^{2} attacked via $\beta_{i}: \partial \bar{e}_{i}^{2} \rightarrow \zeta_{1}^{\prime}$
extend f_{1}^{\prime} to $f_{1}: Y_{1} \rightarrow X$ by F_{i} on \bar{e}_{i}^{2}
exercise: $\pi_{1}\left(\nu_{1}, e^{0}\right)=\pi_{1}\left(y_{1}^{\prime}, e^{0}\right) /\left\langle\beta_{1} \ldots \beta_{e}\right\rangle$
so f_{1} induces an isomorphism on π_{n} for $n \leq 1$ now let $\alpha_{1} \ldots \alpha_{k}: D^{2} \rightarrow Y$ generate $\pi_{2}\left(X, x_{0}\right)$

Set $Y_{2}^{\prime}=Y_{1} \cup e_{1}^{2} \cup \ldots e_{k}^{2} \quad$ where each e_{i}^{2} attached $=Y_{1} \vee\left(\sum_{i=1}^{k} s_{i}^{2}\right) \quad$ by constant map
and extend f_{1} to $f_{2}^{\prime}: Y_{2}^{\prime} \rightarrow X$ by α_{1} on e_{2}^{2}
clearly f_{2}^{\prime} induces an isomorphism on $\pi_{n}, n<2$ and surjective for $n=2$
let $\beta_{1} \cdots \beta_{l}$ generate the kennel of f_{2}^{\prime} on π_{2} as above $f_{2}^{\prime} 0 \beta_{i}$ is trivial in $\pi_{2}\left(X, x_{0}\right)$
so $\exists F_{1}: D^{3} \rightarrow X$ sit. $\left.F_{2}\right|_{\partial D^{3}}=\beta_{2}$.
Set $Y_{2}=Y_{2}^{\prime} \cup\left(\frac{11}{l=1} \bar{e}_{2}^{3}\right)$ where \bar{e}_{2}^{3} glued to Y_{2}^{\prime} by β_{i}.
extend f_{2}^{\prime} to $f_{2}: Y_{2} \rightarrow X$ by F_{2} on \bar{e}_{i}^{3}
using Th 27 it is easy to see f_{2} induces an isomorphism on $\pi_{n}, n \leq 2$ continue by induction
given an element $[f] \in \pi_{k}\left(x, x_{0}\right)$

$$
f: s^{k} \rightarrow x
$$

we can define $h_{k}([f])=f_{*}(1) \in H_{k}(x)$ where 1 is a generator of $\pi_{k}\left(s^{h}\right) \cong z$
this gives a well-defined map check this if not obis!

$$
h_{k}: \pi_{k}\left(x, x_{0}\right) \rightarrow H_{k}(x)
$$

called the Harewicz map
lemma 29:
h_{h} is a homomorphism
Proof: $[f],[g] \in \pi_{k}\left(x, x_{0}\right)$
so $f, g: S^{k} \longrightarrow X$
$h \in[f] \cdot[g]$ is given by

$$
\begin{gathered}
c_{*}: H^{k}\left(s^{k}\right) \longrightarrow H^{k}\left(s^{k} v s^{k}\right) \cong H^{k}\left(s^{k}\right) \oplus H^{k}\left(s^{k}\right) \\
1 \longmapsto(1,1)
\end{gathered}
$$

so $h_{*}(1)=\left(f_{*}, g_{*}\right) \cdot c_{*}(1)=\left(f_{*}, g_{*}\right)(1,1)=f_{x}(1)+g_{*}(1)$
so $h_{k}([f] \cdot[g])=h_{k}([f])+h_{k}([g])$

Th ${ }^{m} 30$ (Hurewicz Th ${ }^{\text {m }}$):
if X is path connected, then for $n>1$, $\neq \pi_{n}(x)=0$ for $k<n$, then $h_{n}: \pi_{n}(x) \rightarrow H_{n}(x)$ is an isomorphism for $n=1 \operatorname{ker}\left(h_{1}\right)=\left[\pi_{1}(x), \pi_{1}(x)\right]$

Remark: 1) th ㅆ says if $n>2$ is the first n st. $\pi_{n}(x) \neq 0$ then $H_{k}(x)=0 \forall k<0$ and $\pi_{n}(x) \cong H_{n}(x)$
2) similar th as for $\pi_{k}(X, A)$ if A is simply connected
lemma 31:

$$
\begin{aligned}
& h_{k}: \pi_{k}\left(s^{k}\right) \rightarrow H_{k}\left(s^{k}\right) \\
& \text { is an isomorphism }
\end{aligned}
$$

we prove this later
note: we finally know that $\pi_{k}\left(s^{k}\right) \cong を$! and if $g: S^{k} \rightarrow s^{k}$ then $[g] \in \pi_{k}\left(s^{k}\right)$ is degree g
Corollary 32 :

$$
\begin{aligned}
& h_{k}: \pi_{k}\left(V_{n} s^{k}\right) \longrightarrow H_{k}\left(V_{n} s^{k}\right) \cong \oplus_{n} \mathbb{Z} \\
& \text { is an isomorphism }
\end{aligned}
$$

Proof: check $\pi_{k}\left(V_{n} S^{k}\right)=\Theta_{n} \pi_{k}\left(S^{k}\right)$ and $H_{k}(x \cup Y) \cong H_{k}(x) \oplus H_{k}(y)$ if the wedge point $x \in X$ and $y \in Y$ satisfy $(X, x),(Y, y)$ are NDR pairs
exencise: prove this but be careful it is not true that $\pi_{k}(X \vee Y) \equiv \pi_{k}(X) \oplus \pi_{k}(y)$
(for example consider $\pi_{2}\left(s^{1} \vee s^{2}\right.$) its universal coven is $\simeq V_{\infty} S^{2}$)

Proof of $T^{\underline{n}} \mathbf{n} 30$ (Hurevicz T^{m}):
We prove the theorem for CW complexes (true for general spaces, but harden)
let X be a $C W$ complex sit.

$$
\pi_{k}(x)=0 \quad \forall k<n
$$

Cor 23 says $\tilde{H}_{k}(x)=0 \quad \forall k<n$ $T h^{m} 21$ says we can assum $X^{(n-1)}=\left\{e^{0}\right\}$

$$
\text { so } X^{(n)}=V_{i \in J} S_{i}^{n} \quad \begin{gathered}
\text { one for each } \\
n-c e l l \\
e
\end{gathered}
$$

\therefore the cellular chain groups are
$C_{n}(x)=\bigoplus_{i \in J} Z \quad e_{i}^{n}$ are generators
$\partial^{c w} e_{1}^{n}=0$ since $c_{n-1}(x)=\{0\}$
so $H_{n}(x)=C_{n}(x) / \lim \left(\partial^{c \omega}: C_{n+1}(x) \rightarrow C_{n}(x)\right)$
given $\beta_{j}: D^{n+1} \rightarrow X^{(n)}$ an $(n+1)-$ cell,
recall $\partial^{c \omega} \beta$; is computed as follows $\forall_{q} \in \mathcal{J}$ consider

$$
\partial D^{n+1}=s^{n} \xrightarrow{\beta_{j}} x^{(n)} x^{(n)} x^{(n-1)} \xrightarrow{P_{i}} s^{n}
$$

$p_{i}=$ project to $2^{ \pm 4} n-c e l l$

$$
\begin{aligned}
& \partial^{c W} \beta_{j}=\sum_{i \in \mathcal{J}} \operatorname{deg}\left(p_{i} \circ \beta_{j}\right) e_{1}^{n} \\
& T^{\underline{m}} 27 \text { says } \pi_{n}\left(X, e^{0}\right)=\left\langle e_{i}^{n} \mid\left[\beta_{j}\right]\right\rangle
\end{aligned}
$$

now $h_{n}: \pi_{n}\left(x, e^{0}\right) \rightarrow H_{n}(x)$

$$
\left[e_{i}^{n}\right] \rightarrow\left(e_{i}^{n}\right)_{*}(1)=\left[e_{i}^{n}\right]
$$

So h_{k} sends generators to generators see note after lemma 31 and $h_{n}\left(\beta_{j}\right)=h_{n}\left(\pi\left[e_{i}^{n}\right]^{\operatorname{deg} p_{i} \cdot \beta_{j}}\right)$

$$
\begin{aligned}
& =\sum \operatorname{deg}\left(\rho_{1} \cdot \beta_{j}\right) h_{n}\left(\left[e_{1}^{n}\right]\right) \\
& =\sum \operatorname{deg}\left(\rho_{i} \circ \beta_{j}\right)\left[e_{i}^{n}\right]
\end{aligned}
$$

so h_{h} sends relations to relations
$\therefore h_{k}$ an isomorphism
for $n=1$, since $H_{1}(X)$ is abelian we know
$\left[\pi_{1}(x), \pi_{1}(x)\right] \subset$ ken $h, \therefore h_{1}$ inducer

$$
\bar{h}_{1}: \pi_{1}(x) /\left[\pi_{1}(x), \pi_{1}(x)\right] \rightarrow H_{1}(x)
$$

as above \bar{h}, takes generators to generators and relations to relations

Proof of Lemma 31: by 29 we know h_{k} a homomorphism
let $f: S^{k} \rightarrow s^{k}$ be the identity map

$$
\text { clearly } h_{k}([f])=1 \in H_{k}\left(s^{k}\right)
$$

so h_{k} is onto
for injectivity we note $h_{k}([f])=f_{x}(1)$
but the definition of $\operatorname{deg}(f)$ is $f_{*}(1)$ so $h_{k}([f])=\operatorname{deg}(f)$ for $f: s^{k} \rightarrow s^{k}$
now suppose $h_{k}([f])=0$ ie. deg $f=0$ we need to show f is homotopic to a constant map
we do this by induction on n
recall, in Alg Top I we compute $H_{1}\left(5^{\prime}\right) \cong Z$ and $h_{1}: \mathbb{I}_{1}\left(S^{\prime}\right) \rightarrow H_{1}\left(S^{\prime}\right)$ is an isomorphism
so base case done now given $f: s^{k} \rightarrow s^{k}$ st. $\operatorname{deg} f=0$
we can homotop f untill it is smooth and take a regular valve p of f so $f^{-1}(p)$ is a finite number of pts x_{1}, \ldots, x_{l} at each $x_{i}, d f_{x_{i}}$ either presences or reverses the orientation on 5^{k}
set $s\left(x_{2}\right)=\left\{\begin{array}{cll}+1 & d f_{x_{i}} & \text { presewes or } n \\ -1 & d f_{x_{2}} & \text { reverses or } n\end{array}\right.$ from Alg Top I we know

$$
\operatorname{deg}(f)=\sum_{i=1}^{l} s\left(x_{i}\right)
$$

So we can pair the points
from Diff. Top. we know that sirice $d f_{x_{1}}$ is an isomorphism, that f is a diffeomorphism
from a ubhd of x_{i} to a unbid of p so we can choose a small enough nibhd N of P st. $f^{-1}(N)=U N_{i}$, where N_{i} are nbhds of x_{i} and they are disjoint
let α_{i} be disjoint arcs in $s^{k} \times[\varepsilon, 1]$ st. $\partial \alpha_{i}$ is a pair of x_{j} in $S^{k} x\{\varepsilon\}$ with opposite sign and int $\alpha_{2} \subset s^{k} \times(\varepsilon, 1)$ and all x_{j} are end pts of some α_{l}

let $T_{i}=\alpha_{2} \times D^{k}$ be a ubhd of α_{i}
st $T_{i} \cap\left(s^{k} \times\{\varepsilon\}\right)=$ the ubhds $N_{\text {, }}$ of $\partial \alpha_{i}$

let $p^{\prime} \in \partial N$ and $p_{j} \in \partial N_{j}$ st $f\left(p_{j}\right)=\rho^{\prime}$ Consider $S^{k-1} \times[0,1] \stackrel{\&}{ }$ part of ∂T_{i}.
let A be an arc in $S^{k-1} \times[0,1]$ from $P_{,}$to P_{k}
use f to define a function

$$
\begin{array}{r}
\left(s^{k-1} \times\{0,1\}\right) \cup A \xrightarrow{\widetilde{f}} \partial N=s^{k-1} \\
\text { constant }=p^{\prime} \text { on } A
\end{array}
$$

this gives a mop $\bar{f}: s^{k-1} \rightarrow s^{k-1}$

since $\left.\tilde{f}\right|_{s^{h-1} \times\{0\}}$ is a orientation reverscrig differ and

$$
\left.\tilde{f}\right|_{s^{k-1} x\{1\}} \text { " } \quad \text { preserving differ }
$$

we know $\operatorname{deg} \bar{f}=0$
So by induction \bar{f} is null-homotopic
\therefore we can extend \bar{f} to a map $\bar{F}: D^{k} \rightarrow \partial N$

$$
\text { with } F l_{\partial p^{k}}=\bar{f}
$$

we can use \vec{F} to get a mop from

$$
S^{h-1} \times[0,1] \xrightarrow{\bar{F}} \partial N
$$

(note $\left.\left(S^{h-1} \times[0,1]\right) \backslash A=D^{k}\right)$
now $\left.f\right|_{N_{J}}$ and F give a map
from $\partial_{11} T_{i} \longrightarrow N=D^{k}$

$$
S^{k-1}
$$

but any map from $\partial D^{k} \rightarrow D^{k}$ can be extendeded to a mop $D^{k} \rightarrow D^{k}$ (slice it is null-homotopic) note this mop takes $\partial D^{k} \times[0,1]$ to ∂N we now hove a mop defined on

$$
M=S^{k} \times[0, \varepsilon] \cup\left(U T_{\imath}\right) \xrightarrow{G} S^{k}
$$

$$
\partial M=\left(S^{h} \times\{0\}\right) \cup Y \text { and } G(Y) \subset S^{k}-\{p\}
$$

since $S^{k}-\left.\{p\} \simeq p t G\right|_{y}$ is homotopic to a mop constantly $P^{\prime \prime}$
let $Y \times[0,1]$ be a ubhd of Y in $\overline{\left(S^{k} \times[0,1]\right)-M}$ can extend G oven $\zeta \times[0,1]$ by the above howotopy and then oven rest of $S^{k} \times[0,1]$ by sending everything to $p^{\prime \prime}$ this gives a homotopy of f to a constant map
lemma 33:
If $\pi_{1}(x)=1$ and $f: x \rightarrow Y$ induces an ism

$$
H_{k}(x) \rightarrow H_{k}(y) \quad \forall k \leq n
$$

then it induces an som

$$
\pi_{k}(x) \rightarrow \pi_{k}(y) \quad \forall k<n
$$

and is onto for $k=n$
Remark: also true with π_{k}, H_{k} interchanged.
Proof: let c_{f} be the mapping cylinder of f $Y \hookrightarrow C_{f}$ is a retract of C_{f} so

$$
\pi_{k}\left(C_{f}\right) \equiv \pi_{k}(Y) \text { and } H_{k}\left(c_{f}\right) \equiv \pi_{k}(Y) \quad \forall k
$$

\exists inclusion $i_{x}: X \rightarrow C_{f}$ sf.

$$
x \underset{\searrow_{f}}{i_{x}} c_{f} f_{j} \quad \text { so } \quad z_{x} \simeq f \text { via } j
$$

exercise: C_{f} and X simply connected

$$
\begin{aligned}
& \Rightarrow \pi_{1}\left(C_{f}, x\right)=0 \\
& H_{2}(x) \xrightarrow{f_{*}} H_{2}(y) \rightarrow H_{2}\left(C_{f}, x\right) \rightarrow H_{2-1}(x) \xrightarrow{f_{x}} H_{2-1}(y) \\
& \uparrow h_{i} \uparrow h_{i} \hat{h_{i}} \hat{h_{1-1}} f_{x} \uparrow h_{1-1} \\
& \pi_{1}(X) \xrightarrow{f_{k}} \pi_{2}(y) \rightarrow \pi_{1}\left(c_{f_{1}} x\right) \rightarrow \pi_{1-1}(X) \xrightarrow{f_{x}} \mathbb{\pi}_{1-1}(y)
\end{aligned}
$$

exencuse: diagram commutes (only nontrivial ore to check is $3^{\text {ad }}$ square)
f_{*} an isomorphisms for top row with $1 \leq n$

$$
\Rightarrow H_{i}\left(c_{f}, x\right)=0 \text { for } 2 \leq n
$$

relative Hurewicz $\Rightarrow \pi_{2}\left(C_{f}, x\right)=0$ for $i \leq n$ $\Rightarrow f_{y}: \pi_{2}(x) \rightarrow \pi_{2}(u)$ an ism $2<n$ and surjective for $ワ=n$

If X, Y are simply connected CW complexes and $f: X \rightarrow Y$ induces an isomorphism

$$
f_{*}: H_{k}(x) \rightarrow H_{k}(\zeta) \quad \forall k
$$

then f is a homotopy equivalence

Proof: lemma 33 says f induces an isomorphism on π / k for all k so Whitehead's $T_{h} \underline{m}$ (Thm 25) says f is a homotopy equivalence
given a group Π and a positive integer n
st π is abelian if $n>1$
Then a topological space X is an
Eliemberg-Maclane space of type
(π, n) or simply a $\underline{K(\pi, n)}$ if

$$
\pi_{k}(X)= \begin{cases}0 & k \neq n \\ \pi & k=n\end{cases}
$$

example:

$$
S^{\prime} \text { is a } K(z, 1)
$$

indeed $\pi_{1}\left(s^{\prime}\right)=\mathbb{Z}$ and by $\pi^{m} 18$

$$
\pi_{k}\left(s^{\prime}\right) \cong \pi_{k}(\mathbb{R})=0 \quad \forall k>1
$$

Th ㄹ 35
given any group and integer as above \exists a (W complex that is a $K(\pi, n)$ and it is unique ypto homotopy

Proof: assume $n>1$ (exencié: do $n=1$ case)
let $\left\{\alpha_{1}\right\}_{i \in I}$ be a generating set for π $\operatorname{set} \hat{X}=0$-cell $u\left\{e_{i}^{n}\right\}_{i \in I}$

$$
=\bigvee_{i \in I} s^{n}
$$

$\pi_{k}(\hat{x})=0 \quad \forall k<n \quad$ and
$\pi_{n}(\hat{x}) \cong H_{n}(\hat{x}) \cong \bigoplus_{i \in I} \mathbb{Z}\left\langle e_{2}^{n}\right\rangle$ by Harewirz
let $\left\{r_{j}\right\}_{j \in J}$ be relations for π
for each r_{j}, \exists a map $f_{j}: s^{n} \rightarrow \hat{X}$ \} exencise if
st. $r_{j}=\left[f_{j}\right] \in \pi_{n}(\hat{x}) \quad$ not clear
since \hat{X} is simply connected, Th ${ }^{m} 27$ says attaching e_{j}^{n+1} to \hat{x} with $f_{j}: \partial e_{j}^{n+1} \rightarrow \hat{X}$ will add the relation r_{i} to π_{n} (also all $\pi_{k}, k<n$, are unaffected)
so if $\bar{X}=\hat{x} \cup\left\{e_{j}^{n+1}\right\}$ using the f_{j}
then $\pi_{k}(\bar{x})= \begin{cases}0 & k<n \\ \pi & k=n\end{cases}$
now $\pi_{n+1}(\bar{X})$ is generated by so elements

$$
g_{i}: s^{n+1} \rightarrow \bar{x}
$$

add $n+2$ cells to \bar{x} using g_{i} to get \tilde{X} now $\pi_{k}(\tilde{X})= \begin{cases}0 & k<n, k=n+1 \\ \pi & k=n\end{cases}$
inductively k ill π_{k} for $k>n$ to get $K(\pi, n)$
to show uniqueness up to hire equivalence let X, Y be two CW $K(\pi, n)$ s
if we can construct a map $f: X \rightarrow Y$ inducing an isomorphism on all π_{k} then we are done by Whitehead's T^{m} the construction of f is exactly like in the proof of following Th ${ }^{m}$

Th -36 :
If X, Y are connected $C W$ complexes and X is a $K(\pi, 1)$
then \exists a one-to-one correspondence

$$
\left[\left(Y, y_{0}\right),\left(X, x_{0}\right)\right]_{0} \leftrightarrow \operatorname{Hom}\left(\pi_{1}\left(Y, y_{0}\right), \pi_{1}\left(X, x_{0}\right)\right)
$$

a connected space with $\pi_{k}=0 \quad \forall k \geq 2$ is called aspherical
Proof: we assume $X^{(0)}=\left\{x_{0}\right\}, Y^{(0)}=\left\{y_{0}\right\}$ clearly if $[f] \in[Y, X]_{0}$ then $f_{*}: \pi_{1}\left(y_{1}, y_{0}\right) \rightarrow \pi_{1}\left(x_{1} x_{0}\right)$ is a homomorphism

Claim: this map is onto
indeed, given $h: \pi_{1}(y) \rightarrow \pi_{1}(x)$ we will inductively build a map

$$
f: Y \rightarrow X \quad \text { st. } f_{t}=h
$$

on the o-skeleton map is oburoirs

$$
f\left(y_{0}\right)=x_{0}
$$

each 1 -cell e^{\prime} in Y is a loop, $\left[e^{\prime}\right] \in \pi_{1}(y)$
so $h\left(\left[e^{\prime}\right]\right) \in \pi_{1}(x)$
let $\gamma \in h\left(\left[e^{\prime}\right]\right)$ so $\gamma:[0,1] \rightarrow X$
define f on e^{\prime} by γ
this extends f to $\psi^{(1)} \rightarrow X$ given a 2 -cell e^{2} in $y^{(2)}$
∂e^{2} is a $\operatorname{loop} \eta$ in $y^{(1)}$ and $[\eta]=0 \in \pi_{1}(y)$
\uparrow since bounds e^{2}
So $[f(\eta)]=h([\eta])=0$ in $\pi_{1}(x)$
$\therefore f(\eta)$ bounds a dish $F: D^{2} \rightarrow X$
is X
use F to extend f oven e^{2} this extends f oven $Y^{(2)} \rightarrow X$
now inductively assume f is defined $\psi^{(k)} \rightarrow X$
assume e^{k+1} is a $(k+1)$ cell in $y^{(k+1)}$ $\partial e^{k+1} \subset Y^{(k)}$
so $f\left(\partial e^{k+1}\right)$ is a k-sphere in X since $\pi_{k}(x)=0 \quad(k>1)$ we know this extends to a $(k+1)$-dish

2e. $\exists F: D^{k+1} \rightarrow X$ st.

$$
F\left(\partial D^{k+1}\right)=f\left(\partial e^{k+1}\right)
$$

use F to extend f over e^{k+1}
\therefore we con extend f over $Y^{(k+1)} \rightarrow X$
we now have $f: Y \rightarrow X$ and f_{*} and h act the same on the generators of $\pi_{1}\left(y^{\prime}\right)$ (re on loops in $\varphi^{(1)}$)
$\therefore f_{*}=h$ and our mop onto
Claim: map is injective
Suppose $f, g: Y \rightarrow X$ induce same $\operatorname{mop} \pi_{1}(Y) \rightarrow \pi_{1}(x)$
consider the $C W$ str on $Y \times[0,1]$
for each 2 -cell e^{i} of Y get
2 1-cells of $Y \times[0,1]$
$e^{1} \times\{0\}$ and $e^{i} \times\{1]$ and
1 ($2+1$)-cell
$\tilde{e}^{n}=e^{\prime} \times[0,1] \quad$ attached in "obvious way

define $H: Y \times[0,1] \rightarrow X$ by

$$
\begin{array}{ll}
f \text { on } & Y \times\{0\} \\
g \text { on } & Y \times\{1\} \\
x_{0} \text { on } & e^{0} \times[0,1]
\end{array}
$$

now inductively define oven \tilde{e}^{1}
for \tilde{e}^{-1} in $(Y \times[0,1])^{(2)}$ note © go backwards

$$
\partial \tilde{e}^{\prime}=\overline{\left.\left.\left(e^{\prime} \times\{0\}\right) *\left(e^{0} \times[0,1]\right) \times\left(e^{\prime} \times\{1\}\right) \times\left(e^{1} \times\{1\}\right)\right\}, 1\right)}
$$

so

$$
\begin{aligned}
H\left(\partial \tilde{e}^{\prime}\right) & =\overline{f\left(e^{\prime}\right)} \times x_{0} * g\left(e^{\prime}\right) * x_{0} \\
& \simeq \overline{f\left(e^{\prime}\right)} * g\left(e^{\prime}\right)
\end{aligned}
$$

and this is O in $\pi_{l}(x)$
so $\exists a$ disk D^{2} in X with boundary $H\left(\partial \widetilde{C}^{\prime}\right)$ extend If oven $\tilde{e}^{\prime \prime}$ using D^{2}
so H defined on $(Y \times[0,1])^{(2)}$
con extend. H over higer skeleta just like above

